Metric Learning on Joint Embedding of 3D Scan and CAD Objects

Berna Kabadayi

Angela Dai

Technical University of Munich

Figure 1: We improve the baseline [6], retrieves the the most similar CAD models from a partial scans, by 13% margin

for the instance-level CAD model retrieval accuracy and by 18% margin for the Top-1 category-level CAD model retrieval

accuracy by leveraging deep metric learning methods.

Abstract

With the help of the recent advances in 3D reconstruction
algorithms, 3D scan geometry and scene understanding are
getting popularity. Due to the noisy and incomplete nature
of the 3D scan geometry, replacing scan models with the
complete CAD models is important towards getting com-
plete scenes. 3D scan geometry and CAD models contain
interconnected information thus mapping between these two
domains is crucial. In our work, based on the 3D CNN
based approach proposed by Dahnert et al.[0], we lever-
age different metric learning and negative sampling meth-
ods to get a representative embedding space between these
two domains. Our investigation by means of different metric
learning such as contrastive loss and sampling approaches

such as hard negative sampling outperforms our baseline
[0] by 13% margin for the instance-level CAD model re-
trieval accuracy and by 18% margin for the Top-1 category-
level CAD model retrieval accuracy.

1. Introduction

With the availability of the commodity sensors such as
Microsoft Kinect, Intel RealSense which provides pixel-by-
pixel depth images besides RGB frames, 3D reconstruction
of the scenes has been advanced for the several years within
computer vision and graphics community [17, 13, 30].

3D reconstruction of the static and dynamic scenes helps
us to understand the underlying representation of the 3D



geometry by leveraging object detection, semantic segmen-
tation tasks [12] on it. However, the 3D geometry that is re-
constructed by the standard RGB-D reconstruction pipeline
[13, 17] is often not-complete, noisy and still way more far
from compact representation of the scene.

Therefore, to tackle missing and noisy geometry prob-
lem, several algorithms are proposed in the direction of ei-
ther completing the missing parts of the 3D geometry in
a supervised [9] or self-supervised manner [8] or replac-
ing the noisy and incomplete real-world scan objects with
the CAD models [0, 23, 19] with the help of the increas-
ing availability of public CAD model datasets [1]. Both
real-world scan objects and 3D CAD models are commonly
used for semantic understanding of environment and con-
tain compromising information in a way that CAD models
are compact, clean and simple, whereas real-world scan ob-
jects are more complex, noisy and incomplete. Complete
and clean representation of the 3D environment by means of
CAD models helps us to operate different tasks such as se-
mantic segmentation, object detection, which will be useful
for many applications such as AR-VR. In that sense, find-
ing a representative feature mapping in between the scan
objects and CAD models is necessary for scan-CAD model
retrieval problem.

Benefiting from the of publicly available large scale
datasets such as ScanNet [7] and ShapeNet [ 1] which pro-
vide large amount of scan objects and CAD models, respec-
tively, several algorithms are proposed for finding a joint
embedding space of the scan objects and CAD models. [6]
Most of the approaches focus on the category level scan-
CAD retrieval [0, 23, 19]. Category level retrieval is that if
the class of retrieved CAD model is the same with the class
of the query scan object, then this is considered as a correct
retrieval. In spite of the fact that class level retrieval pro-
vides us a mapping between two domains, capturing intra-
class mappings would offer more meaningful semantic in-
formation. Recently, Dahnert et al. [6] proposed a new 3D
CNN based approach to discover intra-class level similari-
ties.

In this research work, by using Joint Embedding of 3D
Scan and CAD Objects paper [6] as a baseline, we asked
two main questions for instance-level scan-CAD model re-
trieval. First, can we leverage from 3D deep metric learning
methods besides standart triplet loss? Second, can we bene-
fit from sampling methods during training to leverage intra-
class similarities? In order to answer the first question, we
investigate the effect of commonly used deep metric learn-
ing methods such as contrastive loss [10], quadruplet loss
[3] on the scan-CAD similarity benchmark[6]. For the sec-
ond question, we focus on the online hard negative mining
during training and compare the performance with a com-
bination of embedding losses. Our method outperforms the
state of the art baseline with 15% margin for instance-level

retrieval accuracy and by 18% margin for Top-1 category-
level retrieval accuracy.

In summation, we make the following contributions in
this research work on top of our baseline paper:

e We investigate the effect of different metric learning
methods for 3D representations and find out that con-
trastive loss outperforms the triplet loss for scan-CAD
model retrieval problem.

e We benefit from different sampling methods during
training and show that online negative mining within
the same class helps the reveal intra-class similarities.

2. Related Work

CAD-Model Retrieval With the availability of the large
scale richly annotated scan and CAD model datasets such as
ScanNet [7] for scan models, ShapeNet [1] for CAD mod-
els, CAD model retrieval methods can be considered as an
expressive way of representing the image or the scene in a
complete fashion. There are several directions in 3D CAD
model retrieval problem.

The first approach is that researchers tackle the prob-
lem as an RGB-D to CAD model retrieval where given an
RGB-D object or a scene, the most similar CAD models
should be retrieved by the method. SHREC 17 [23] and
SHREC 18 [19], RGB-D to CAD retrieval challenges, fo-
cus on the class level retrieval. These challenges helps us
in many ways such as scene modelling or better AR/VR ap-
plications. It is also important to capture the instance level
differences as well as the class level differences. Instance
level CAD model retrieval method aims to investigate the
differences in the same class. (i.e. retrieving the correct
instance of the class rather than just predicting which class
object belongs to). Dahnert et al. [6] addresses that direc-
tion by providing a new approach to capture the instance
level 3D CAD model retrieval.

Besides considering the problem as an RGB-D to CAD
model retrieval, the second direction is the image based 3D
CAD model retrieval. Given the RGB image captured in
the real world, the methods aim to estimate the most simi-
lar and relevant CAD models [15]. In addition, Mask2CAD
[14] formulates the problem as an image-shape embedding
learning. Yuan et al. [29] also proposes a method which
estimates 6D object pose including its orientation and loca-
tion.

In the scope of this research work, we focus on the
RGB-D to CAD model retrieval problem by using Dahnert
et al. [6] work as a baseline.

Deep Metric Learning Deep metric learning tackles the
problem of mapping the high dimensional data into the
meaningful embedding space so that these embeddings can
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be used for different tasks such as face recognition, object
retrieval, etc.

The researches tackle the metric learning either as a clas-
sification based losses or embedding based losses. Classi-
fication based losses such as normalized softmax loss for-
mulates the weight matrices into the class logits. However,
embedding based losses such as contrastive loss try to learn
the relations available in the batch during training. There-
fore, how batches are sampled is also a very important con-
cern in the embedding losses as well to be able to learn the
semantic differences in between the data.

More than a decade ago, Hadsell et al. [10] proposed
a dimensionality reduction method, which is known as a
standart constrastive loss, based on the considering neigh-
borhood relationship of the data. The idea of the contrastive
loss is pulling the similar samples into each other while
pushing the dissimilar samples from each other.

Another type of commonly used embedding loss is
triplet loss which is introduced in the FaceNet [11]. It aims
to learn the representations by comparing the distances be-
tween positive and and negative sample given an anchor.

More recently, MoCo [4], SimCLR [2] and PIRL [16]
propose methods to learn the visual representations in a self-
supervised way.

3. Method Overview

Our hourglass fashioned network [18] learns the joint
embedding space between real-world scan objects and CAD
models with the help of the fully 3D convolutional net-
works. The network consists of two stacked hourglass fol-
lowed by an final encoder to find latent space between scan
objects and CAD models. The first and second hourglass
encoder-decoders help us to obtain more CAD-like repre-
sentations of the real-world scan objects before mapping
them with the CAD models to the joint embedding space.

The first hourglass which consists of an encoder-decoder
learns to segment foreground object from background with

the help of the provided scan object mask. The second hour-
glass which also consists of an encoder-decoder takes par-
tial scan object that is obtained from the first hourglass and
a reference CAD model as an input, then learns to com-
plete the partial scan object. The first and second hour-
glass help to obtain more CAD-like representation. Then,
the last encoder takes scan object whose background is re-
moved and partialness is completed, a positive CAD model
and a randomly generated negative CAD model as an in-
put, then produces feature vectors of the 3D models to find
the joint embedding space between real-world scan object
and CAD models by formulating triplet loss between scan-
object, positive CAD model and negative CAD model [6].
The scan objects and CAD models are all represented as a
323 binary occupancy grids.

We formulate different loss functions on 323 dimen-
sional scan object, positive CAD model that corresponds
to scan object and negative CAD model which is sampled
in several ways. In the results section, we demonstrate the
effect of loss functions and sampling strategies in detail.

This end-to-end 3D CNN based method [6] learns the
shared embedding space of real-world scan objects and
CAD models and helps us to reveal intra-class similarities
between CAD models in the same class for many applica-
tions such as CAD model retrieval.

4. Metric Learning

In this section, we briefly mention about standard loss
functions such as contrastive loss and triplet loss for metric
learning and commonly used negative mining techniques.

4.1. Loss Functions

Contrastive loss The standard contrastive loss [10] takes a
pair of embedding vectors and a flag stating whether they
are similar samples or not. If they are similar samples con-
trastive loss tries to minimize the difference between them.
If they are dissimilar, then constrastive loss tries to max-



imize the distance up to the some margin. The proposed
margin based contrastive loss:

£($1,$2,y):y*d($1,$2)+ (1)

(1 —y) *max{0,m — d(x1,x2)}
where d(z1,22) is a distance metric which is often
L2 distance between feature vectors, Y is a label of the
similarity and m is margin for negative samples. Choy et al.
[5] uses margin for also positive pairs to prevent overfitting.

Triplet Loss The standard triplet loss[26] takes an anchor,
positive and negative samples. The triplet loss tries to learn
a metric where positive sample is closer to the anchor than
the negative sample which is dissimilar to anchor up to the
some non-negative margin. The proposed margin based
triplet loss for three feature vectors x1, 22 and x3:

L(x1,x9,23) = max{0,d(z1, x2) — d(z1,23) + m}

where d(z1,22) is a distance between anchor and pos-
itive sample, d(x1,x3) is a distance between anchor and
negative sample and m is a non negative margin.

The difference between standard contrastive and triplet
loss is that the margin in contrastive loss is based on the
exact distances between two embeddings. However, the
triplet loss considers the relative distance between pairs.

Quadruplet Loss The quadruplet loss [3] can be considered
as an extension of the standard triplet loss. It is claimed that
quadruplet loss pushes away the negative pairs from posi-
tive pairs and enables better generalization by introducing
a new constraint on the negative samples. The proposed
quadruplet loss:

£(1’1,Z2,$3,l‘4) :d(fL'l,CEQ) 7d($1,.’£3)+m1+ (2)

d(xl, $2) — d(xg, 5!74) =+ Mo

where d(x1,x2) is a distance between anchor and positive
sample, d(x1,x3) is a distance between anchor and nega-
tive samples, d(zs,z4) is a distance between two negative
samples coming from different classes and m; and my is a
non negative margins.

In the context of scan-CAD model retrieval task, we try
above-mentioned loss functions as shown in the Figure 1
and their variations.

4.2. Negative Sampling Mining

In metric learning, there are three types of negative sam-
ples which are easy, semi-hard and hard negatives. In this
section, we briefly explain what they are for triplet loss and

focus on the hard negative sampling in our work like most
of the recent approaches [5].

Easy Triplets The triplet loss becomes easily 0. Because
the negative sample is located relatively far away from the
anchor considering positive one as shown in the Figure 2.

d(a,p) +m < d(a,n)

Semi-Hard Triplets In these triplets, the positive sample is
closer than negative but we still have positive triplet loss.

d(a,p) < d(a,n) < d(a,p) +m

Hard Triplets The negative sample is closer to the anchor
than positive.
d(a,n) < d(a,p)

In the scope of the scan-CAD model retrieval, we lever-
age different sampling methods considering the above-
mentioned negatives, since the way we sample during the
training helps us to learn the geometric representations bet-
ter. For this work, we focus on the online mining techniques
where samples are randomly chosen during training instead
of the offline mining techniques such as memory bank ap-
proach [27].

The first approach shown in the Figure 2 which is also
used in the baseline [0] is that we remove the all instances
within the same class for a given query in a batch, then ran-
domly select one CAD model from the remained ones. In-
stead of using triplet loss we use contrastive loss. It is called
random negative sampling. The result of random negative
sampling for the contrastive loss scenario is shown in Table
2. This scenario handles the easy negatives.

One drawback of the first method is that although this
random negative sampling helps us to learn the inter-class
representations, sampling randomly with the CAD model
from different class does not allow to capture 3D represen-
tations sufficiently in the same class. To tackle hard nega-
tives the way we sample is that we first remove the instance
of the CAD model from the batch, then randomly sample
from the same class then assign a relatively very small mar-
gin to be able to leverage the features in the same class. This
sampling is shown in Figure 3.

Latter-mentioned sampling does not guarantee that after
removing the CAD instance from the batch we will have
another CAD sample from the same class for sampling.
Therefore, we propose an adaptive margin sampling ap-
proach for the negative samples. In the minibatch we con-
struct, we first remove the corresponding CAD model of the
scan model then check the remaining ones from the same
class. If there is still CAD samples from the same class
then we sample randomly from the same class with a rel-
atively small margin, otherwise we randomly sample from
different class and assign a large margin. This is shown in
the Figure 4.
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Figure 2. Traditional triplet loss [24] in a random negative sam-
pling scenario. It reduces the difference between the similar ob-
jects (i.e 3D scan-positive CAD) and increase the difference be-
tween different objects (i.e 3D scan-negative CAD).
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Figure 3. Hard negative sampling within the same class.
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Figure 4. Adaptive margin approach: Hard negative sampling
within the same class if available in the batch and set a small mar-
gin, otherwise sampling from the different class and set a large
margin.

5. Network Training

Dataset For training we use the same setup with the
baseline paper [0]. There are 14123 samples for train-
ing, validation and test in total. Each sample is con-
structed from a real-world scan object and segmentation
mask from ScanNet[7], corresponding positive CAD model
from ShapeNet []. The training, validation and tests splits
consist of 9571, 1398 and 3154 scan-CAD pair samples, re-
spectively.

For testing, we use the public Scan-CAD Object Simi-
larity Dataset[6]. It offers 5102 annotated scan-CAD pairs.
For a query scan there are 6 CAD models which are pro-
posed for annotation to user and 3 of them marked as most
similar ones. There are 3207, 814 and 1081 annotated sam-
ples available for training, validation, test splits, respec-
tively.Within Scan-CAD Object Similarity Dataset[6], 2554
out of 3207 training samples are unique scans. 578 of the
814 validation samples and 847 out of the 1081 test sam-
ples offer unique scans. The sample from Scan-CAD Object
Similarity Dataset is shown in the Figure 5.

We also benefit from the training and validation parts of
the scan-CAD Object Similarity Dataset[0] for finetuning
purposes.

Network Architecture The baseline network architec-
ture consists encoders followed by decoders. The first
encoder-decoder component is responsible for foreground-
background segmentation. The second encoder-decoder is
for scan completion. The last encoder is Siamese network
for 3 input. For funetuning we modified the last encoder in
a way that we can forward 6 CAD models for every scan
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Figure 5. Sample from Scan-CAD Object Similarity dataset. For
every scan, there are 6 CAD models in the pool, 3 CAD models
ranked as the most similar ones.

model, which are available in the Scan-CAD Similarity
Benchmark Dataset.

Optimization We use Adam optimzer with a batch size 128
for end to end training. We use the learning rate le—3 with a
step-wise 0.1 learning rate decay ratio. We train our model
around 1 day for 800 to 1000 epochs on a single Nvidia
GTX 1080Ti. For finetuning, we decrease the batch size
from 128 to 64 for memory limitations and train around 5
hours on the Scan-CAD Similarity Benchmark Dataset.

6. Results

The network takes RGB-D scan as an input, and learns
to segment background and foreground from each other
then completes the missing parts of the scan with provided
appropriate CAD model. Then, the network tries to learn
joint embedding space between scan and CAD geometry
by formulating triplet loss in the baseline [6]. What we
propose instead of a standard triplet loss formulation
directly, we explore several directions and explain the
results in this section.

Effect of Contrastive Loss We first run experiments on the
contrastive loss with positive and negative margins instead
of a standard triplet loss which is used in the baseline model
[6]. We show that contrastive loss with a negative and
positive margin outperforms the triplet loss for revealing
geometric features. The best result we get with contrastive

loss formulation is that we achieve the 0.53 instance
retrievel accuracy. where we use 1.25 negative margin and
random negative sampling. The detailed comparison on
the contrastive loss with different margins can be found the
Table 2.

Negative Sampling for Contrastive Loss Secondly, we
experiment different sampling techniques for contrastive
loss formulation. In the baseline we use, the negative
CAD models are randomly sampled from different classes
within the same batch. In addition to that, we also sample
negatives from the same class. The hard-negative sampling
performed near random sampling in contrastive loss setting
but still outperforms the standart triplet loss by 7% margin.
The detailed comparison of the can be found in Table 2

Effect of Quadruplet Loss Quadruplet Loss near behaved
triplet loss baseline. It is likely that it enforces regulariza-
tion between negative samples in which we leverage less
from in the scope of the scan-CAD object similarities.

Finetuning on Scan-CAD Last, we benefit from the
ranked scan-CAD object similarities dataset which is pro-
vided by our baseline paper [0]. We finetune one of the our
best models that we evaluate on the similarity dataset with
the contrastive loss. We change the last encoder architecture
from 3 CAD sample to 6 CAD samples and applied easy
positive mining strategy [28]. The reason why we fine-tune
is that the standart test setup is way more challenging than
training scenario. In training, the network learns to differen-
tiate positive and negative CAD samples, whereas in test the
networks predicts the most similar CAD models provided 6
CAD models within the same class. We achieve 0.58 in-
stance retrieval accuracy, which is state of the art perfor-
mance on scan-CAD Object Similarity Benchmark. Fine-
grained evaluation scores for retrieval accuracy and ranking
quality is shown in Table 4.

6.1. Quantitative Results - Metrics

Topl Category-based Retrieval Accuracy Category-
based retrieval accuracy is that if the retrieved class is the
same with the query scan class then this retrieval is marked
as true positive as shown in 6. Our method outperforms the
baseline [6] and compared methods by %18 for the Top-1
Category-based retrieval accuracy as shown in Table 1.

Instance Retrieval Accuracy Instance retrieval accuracy,
proposed by Dahnert et al. [6], is improved version of
category-level retrieval accuracy. Instance level retrieval
accuracy is that for a given scan query, annotated 6
CAD samples, ranked 3 CAD samples, if the methods
retrieve one of the CAD models from ranked list, then
it is considered as true positive. The example sample
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Figure 6. Sample from Scan-CAD Object Similarity dataset. For
every scan, there are 6 CAD models in the pool, 3 CAD models
ranked as the most similar ones.

Method ‘ Top-1 Retrieval Accuracy
FPFH [22] 0.14
SHOT[25] 0.07

PointNet [20] 0.49
3DCNN [21] 0.57
JointEmbedding [6] 0.68
Our method 0.86

Table 1. Top 1 category-based CAD model retrieval accuracy com-
parison with the baseline we have [6] and other methods compared
with. By using contrastive loss and negative sampling strategy, we
improve the Top-1 category-based retrieval accuracy by %18. Pre-
vious experiments are taken from Joint Embedding of 3D Scan and
CAD Objects [6].

from Scan-CAD Object Similarity dataset is shown in
Figure 5. In Table 2 and Table 5, instance retrieval accu-
racy results are shown. Visual results are shown in Figure 1.

Ranking Quality Ranking quality, proposed by Dahnert et
al. [6] is that top n (n < 3) predicted CAD models are com-
pared with the ranked ones, evaluate number of commons
and divide by n. The comparison of the ranking quality is
shown in the Table 3.

7. Limitations

Although our deep metric learning and sampling ap-
proaches outperform the baseline we use [6], there are sev-
eral limitations. For instance, we only consider the geo-
metric information, therefore, combining scan-CAD model
retrieval problem with the image-CAD model retrieval task
would potentially be another direction.

8. Conclusion

By having a baseline on the 3D CNN based approach to
find mapping between scan-CAD model domains, we lever-
age different metric learning and sampling algorithms to
learn the representation of this domains better. We show
that contrastive loss and hard negative sampling approaches
improve not only category level retrieval evaluation but also
instance level retrieval evaluation.
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Method Margin (neg,pos) ‘ trash bin  bathtub bed bookshelf cabinet chair display file sofa table other | classavg instavg
Baseline Mypiplet = 0.2 0.50 0.60 042 0.19 0.26 0.55 045 025 033 032 043 0.39 0.43
Random neg sampling my, = 1.0 0.55 049 044 0.55 0.32 0.48 046 041 054 048 040 0.46 0.47
Random neg sampling my = 1.25 0.81 0.48 0.49 0.57 0.29 0.54 0.51 038 049 046 044 0.50 0.53
Random neg sampling my, = 1.50 0.60 0.61 0.32 0.74 0.38 0.46 038 039 041 046 042 0.47 0.48
Random neg sampling | m,, = 1.25,m, = 1.25 0.55 047 047 0.42 0.34 0.49 0.57 036 051 044 033 0.45 0.46
Random neg sampling my = 1.25,m, = 0.1 0.70 050  0.51 0.52 0.40 0.45 056 041 0.51 048 040 0.49 0.49
Same and diff. class my = 1.25,0.1,m, =0 0.42 058 042 0.46 0.37 0.55 039 047 049 055 0.52 0.47 0.50
Same and diff. class | m,, = 1.25,0.2,m, =0 0.44 059 051 0.51 0.35 0.54 0.41 042 048 055 050 0.48 0.50
Same and diff. class | m,, = 1.25,0.3,m, =0 0.40 0.62  0.54 0.50 0.39 0.54 047 043 055 052 048 0.49 0.50
Random sampling&reg my, =1.0m, =0 0.75 0.38 0.37 0.40 047 045 049 038 052 048 043 0.46 0.49
Random sampling&reg my = 1.25m, =0 0.76 0.53 0.49 0.64 0.34 0.52 0.56 041 053 047 040 0.51 0.52

Table 2. Top-1 Retrieval Accuracy comparison of baseline paper [6] and our contrastive loss setting per class on Scan-CAD Object Sim-
ilarity benchmark public dataset with different margins. The explanation of the methods as follows. Random neg sampling: Random
negative sampling from different class after removing query object CAD from the batch. Same and diff class: After removing query
object CAD from the batch, if there is at least one sample CAD within the same class then sample with it assign small negative margin,
if not then sample with random negative from different class. Random sampling&reg: Random negative sampling from different class
after removing query object CAD from the batch. In addition add constraint like positive CAD and negative sampled CAD also should be
far away from each other up to some margin.

Method Margin (neg,pos) ‘ trash bin  bathtub bed bookshelf cabinet chair display file sofa table other | classavg instavg
Baseline Miriplet = 0.2 0.29 024 0.19 0.08 0.12 0.19 0.14 0.19 0.15 0.10 0.09 0.16 0.16
Random neg sampling my, = 1.0 0.22 0.21 0.19 0.24 0.14 0.17 0.15 013 0.19 0.8 0.17 0.18 0.18
Random neg sampling my, = 1.25 0.37 020 0.17 0.25 0.14 0.19 0.18 0.14 0.19 0.17 0.19 0.20 0.20
Random neg sampling my, = 1.50 0.23 028 0.17 0.30 0.15 0.18 0.17 017 0.14 0.16 0.18 0.19 0.18
Random neg sampling | m, = 1.25,m, =1.25 0.28 0.16  0.17 0.19 0.15 0.18 0.17 015 0.19 0.16 0.13 0.17 0.18
Random neg sampling my, = 1.25,m, = 0.1 0.37 0.17 0.22 0.22 0.15 0.17 0.15 0.16 0.16 0.16 0.20 0.19 0.19
Same and diff. class | m,, = 1.25,0.1,m;, =0 0.20 0.31 0.19 0.20 0.16 0.19 0.17 022 021 0.18 0.19 0.20 0.19
Same and diff. class | m,, = 1.25,0.2,m;, =0 0.18 023 0.18 0.20 0.15 0.21 022 019 0.18 020 022 0.20 0.20
Same and diff. class | m, = 1.25,0.3,m, =0 0.18 024 0.21 0.21 0.15 0.20 0.19 021 0.16 0.8 0.18 0.19 0.19
Random sampling&reg my =1.0m, =0 0.38 0.18  0.20 0.18 0.17 0.18 0.13 020 0.16 0.8 0.17 0.19 0.19
Random sampling&reg my =1.25m, =0 0.34 023 0.16 0.24 0.15 0.19 0.19 015 0.16 0.17 0.17 0.19 0.20

Table 3. Top 1 ranking quality comparison of baseline paper [6] and our contrastive loss setting per class on Scan-CAD Object Similarity
benchmark public dataset. The explanation of the methods can be found in the Table 2.

Contrastive Loss Formulation with 6 CAD models Margin All Tgll?ere d A\I;aflgittleorz d Al _"l;:eislttere d Instance Avg
Pushing the negatives, pulling the positives my, =05 | 046 050 046 0.55 044 047 0.45
Pushing the negatives, pulling the positives my, =12 |049 053 049 058 050 0.55 0.49

Only pushing the negatives my, =14 | 044 049 046 057 041 047 0.43
Pushing the negatives, pulling the positives my, =2.0 | 056 0.61 0.54 0.61 0.51 0.55 0.54
Pushing the negatives, pulling the positives m, =25 |0.60 0.63 055 063 053 0.56 0.58
Pushing the negatives, pulling the positives my, =2.75 | 056 0.63 054 0.64 053 0.56 0.55
Pushing the negatives, pulling the positives my, =3.0 | 053 059 051 0.63 0.51 0.54 0.52

Table 4. Finetuning results for Top-1 Retrieval Accuracy on the Scan-CAD Object Similarity Benchmark [6]. For every sample, there are
6 CAD models which are used for annotation. 3 of 6 CAD models are annotated as the most similar ones. However, since these ranked
annotations are obtained by user study, not all of the samples have ranked 3CADs. Therefore, we filter the annotation samples whose
number of ranked CAD models is less than 3 CADs to be able to see the effect of clean and complete dataset. In that way, we increase
Top-1 Retrieval Accuracy by %3 to %6.




Method Margin (neg,pos) trash bin  bathtub bed bookshelf cabinet chair display file sofa table other | classavg instavg
Baseline Myriplet = 0.2 0.50 0.60 042 0.19 0.26 0.55 045 025 033 032 043 0.39 0.43
Random neg sampling my, = 1.0 0.68 040 045 0.59 0.29 0.50 040 050 048 049 044 0.47 0.50
Random neg sampling my, =1.25 0.86 0.33 0.61 0.56 0.32 0.51 042 042 050 042 056 0.50 0.52
Random neg sampling m, = 1.50 0.63 0.53 0.30 0.71 0.42 0.47 042 050 043 048 032 0.47 0.49
Random neg sampling | m,, = 1.25,m, = 1.25 0.52 0.47 0.45 0.37 0.42 0.50 050 042 046 042 038 0.45 0.46
Random neg sampling my = 1.25,m, = 0.1 0.72 0.27 0.54 0.28 0.51 0.44 050 025 046 048 054 0.45 0.49
Same and diff. class my = 1.25,0.1,m, =0 0.55 0.53 0.27 0.47 0.39 0.54 042 050 046 052 047 0.46 0.50
Same and diff. class m, =1.25,0.2,m, =0 0.47 0.53 0.58 0.49 0.35 0.56 043 025 041 054 046 0.46 0.50
Same and diff. class m, =1.25,0.3,m, =0 0.45 0.53 0.61 0.42 0.41 0.55 042 033 052 058 044 0.48 0.50
Random sampling&reg m, = 1.0m, =0 0.79 040 045 0.46 0.50 0.49 048 058 0.52 047 044 0.51 0.51
Random sampling&reg my = 1.25m, =0 0.81 0.53 0.58 0.61 0.45 0.50 052 042 046 044 043 0.52 0.53

Table 5. Topl Retrieval Accuracy comparison of baseline paper [6] and our contrastive loss setting per class on test split of Scan-CAD
Object Similarity benchmark public dataset.




